MTMH105

First Semester M.TECH (Mathematics Engineering)

Examination Aug/Sep-2015

Numerical Analysis

Time:-3Hours

Max. Marks: -80

Section-A

Answer any five questions:

- Find the value of 3 from $\int_0^1 \frac{x^2}{1+x^3} dx$, using simpson's 1/3 rule by Dividing Q1. the range into four equal parts. Also find the error. Represent the function Q2. $f(x) = x^4 - 12x^3 + 24x^2 - 30x + 9$ and its successive differences into factorial notation. Show that $Y_{k+2} - 4_{k+1} + 4Y_k = 0...(i)[K=0,1]$ has the solution. Q3. Write down the Lag range's Interpolation formula for unequal intervals. Q4. Q5. Use Stirling's formula to find Y₂₈ given: Y₂₀= 49225, Y₂₅= 48316, Y₃₀= 47236, Y₃₅= 45926, Y₄₀=44306 Show that $\int_0^1 \frac{dx}{1+x} = \log 2 = 0.69315$ Given $Y_{20} = 24$, $Y_{24} = 32$, $Y_{28} = 35$, $Y_{32} = 40^{\circ}$ Find y_{25} by Bessel formula. Q6.
- Q7.
- Evaluate $\int_0^4 e^x dx$, by Simpson's rule, using the data e = 2.72, $e^2 = 7.59$, e^3 Q8. = 20.09, e^4 = 54.60 and compare it with the actual value.

Section-B

Answer any two questions:

 (10×2)

- Solve the following system of equation by Q11
 - Gauss seidal Interation method. a)
 - Jacobi Interative method. b)

27x + 6y - z = 85, bx + 15y - 2z = 72, x + y + 54z = 110.

(6*5)

Section- C

Answer any two questions:

Q12. Let A
$$\begin{pmatrix} 3 & 12 & 9 \\ 2 & 10 & 12 \\ 1 & 12 & 2 \end{pmatrix}$$
 then find two triangular

Matrices: L (lower triangular) and U appear triangular) such that A = LU, using the diaenal elements of < as 3, 1, 5. Hence obtain A^{-1}

- Q13. Solve by relaxation method the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$. Inside the square bounded by lines z = 0, z = 4z y = 0, y = 4, given that $u = x^2y^2$ on the boundary.
- Q14. Explain in detail the solution of elliptic equations by Relaxation method. Also write its working methods.

 (15×2)