First Semester M.TECH (Mathematics Engineering)

Examination Aug/Sep-2015

Numerical Analysis

Time:-3Hours
Max. Marks: -80

Section-A

Answer any five questions:

Q1. Find the value of 3 from $\int_{0}^{1} \frac{x^{2}}{1+x^{3}} \mathrm{dx}$, using simpson's $1 / 3$ rule by Dividing the range into four equal parts. Also find the error.
Q2. Represent the function
$f(x)=x^{4}-12 x^{3}+24 x^{2}-30 x+9$
and its successive differences into factorial notation.
Q3. Show that $Y_{k+2}-4_{k+1}+4 Y_{k}=0 \ldots$ (i)[K=0,1] has the solution.
Q4. Write down the Lag range's Interpolation formula for unequal intervals.
Q5. Use Stirling's formula to find Y_{28} given:
$\mathrm{Y}_{20}=49225, \mathrm{Y}_{25}=48316, \mathrm{Y}_{30}=47236, \mathrm{Y}_{35}=45926, \mathrm{Y}_{40}=44306$
Q6. Show that $\int_{0}^{1} \frac{d x}{1+x}=\log 2=0.69315$
Q7. Given $\mathrm{Y}_{20}=24, \mathrm{Y}_{24}=32, \mathrm{Y}_{28}=35, \mathrm{Y}_{32}=40^{\prime}$ Find y_{25} by Bessel formula.
Q8. Evaluate $\int_{0}^{4} e^{x} d x$, by Simpson's rule, using the data $\mathrm{e}=2.72, \mathrm{e}^{2}=7.59, \quad \mathrm{e}^{3}$ $=20.09, \mathrm{e}^{4}=54.60$ and compare it with the actual value.

Section- B

Answer any two questions:

Q11 Solve the following system of equation by
a) Gauss seidal Interation method.
b) Jacobi Interative method.

$$
\begin{aligned}
& 27 x+6 y-z=85 \\
& b x+15 y-2 z=72 \\
& x+y+54 z=110
\end{aligned}
$$

Section- C

Answer any two questions:
Q12. Let $\mathrm{A}\left(\begin{array}{ccc}3 & 12 & 9 \\ 2 & 10 & 12 \\ 1 & 12 & 2\end{array}\right)$ then find two triangular
Matrices: L (lower triangular) and U appear triangular) such that $\mathrm{A}=\mathrm{LU}$, using the diaenal elements of $<$ as $3,1,5$. Hence obtain A^{-1}

Q13. Solve by relaxation method the Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$. Inside the square bounded by lines $\mathrm{z}=0, \mathrm{z}=4 \mathrm{z} \mathrm{y}=0, \mathrm{y}=4$, given that $\mathrm{u}=\mathrm{x}^{2} \mathrm{y}^{2}$ on the boundary.

Q14. Explain in detail the solution of elliptic equations by Relaxation method. Also write its working methods.

